skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Klebanov, Igor R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> In our earlier work [1], we introduced a lattice Hamiltonian for Adjoint QCD2using staggered Majorana fermions. We found the gauge invariant space of states explicitly for the gauge group SU(2) and used them for numerical calculations of observables, such as the spectrum and the expectation value of the fermion bilinear. In this paper, we carry out a more in-depth study of our lattice model, extending it to any compact and simply-connected gauge groupG. We show how to find the gauge invariant space of states and use it to study various observables. We also use the lattice model to calculate the mixed ’t Hooft anomalies of Adjoint QCD2for arbitraryG. We show that the matrix elements of the lattice Hamiltonian can be expressed in terms of the Wigner 6j-symbols ofG. ForG= SU(3), we perform exact diagonalization for lattices of up to six sites and study the low-lying spectrum, the fermion bilinear condensate, and the string tension. We also show how to write the lattice strong coupling expansion for ground state energies and operator expectation values in terms of the Wigner 6j-symbols. For SU(3) we carry this out explicitly and find good agreement with the exact diagonalizations, and for SU(4) we give expansions that can be compared with future numerical studies. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. A<sc>bstract</sc> It has been proposed that the Ginzburg-Landau description of the non-unitary conformal minimal modelM(3, 8) is provided by the Euclidean theory of two real scalar fields with third-order interactions that have imaginary coefficients. The same lagrangian describes the non-unitary modelM(3, 10), which is a product of two Yang-Lee theoriesM(2, 5), and the Renormalization Group flow from it toM(3, 8). This proposal has recently passed an important consistency check, due to Y. Nakayama and T. Tanaka, based on the anomaly matching for non-invertible topological lines. In this paper, we elaborate the earlier proposal and argue that the two-field theory describes theDseries modular invariants of bothM(3, 8) andM(3, 10). We further propose the Ginzburg-Landau descriptions of the entire class ofDseries minimal modelsM(q, 3q– 1) andM(q, 3q+ 1), with odd integerq. They involve$$ \mathcal{PT} $$ PT symmetric theories of two scalar fields with interactions of orderqmultiplied by imaginary coupling constants. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. A<sc>bstract</sc> We study 1 + 1-dimensional SU(N) gauge theory coupled to one adjoint multiplet of Majorana fermions on a small spatial circle of circumferenceL. Using periodic boundary conditions, we derive the effective action for the quantum mechanics of the holonomy and the fermion zero modes in perturbation theory up to order (gL)3. When the adjoint fermion mass-squared is tuned tog2N/(2π), the effective action is found to be an example of supersymmetric quantum mechanics with a nontrivial superpotential. We separate the states into theℤNcenter symmetry sectors (universes) labeled byp= 0, . . . ,N– 1 and show that in one of the sectors the supersymmetry is unbroken, while in the others it is broken spontaneously. These results give us new insights into the (1, 1) supersymmetry of adjoint QCD2, which has previously been established using light-cone quantization. When the adjoint mass is set to zero, our effective Hamiltonian does not depend on the fermions at all, so that there are 2N−1degenerate sectors of the Hilbert space. This construction appears to provide an explicit realization of the extended symmetry of the massless model, where there are 22N−2operators that commute with the Hamiltonian. We also generalize our results to other gauge groupsG, for which supersymmetry is found at the adjoint mass-squaredg2h/(2π), wherehis the dual Coxeter number ofG. 
    more » « less
  4. A<sc>bstract</sc> We introduce a Hamiltonian lattice model for the (1 + 1)-dimensional SU(Nc) gauge theory coupled to one adjoint Majorana fermion of massm. The discretization of the continuum theory uses staggered Majorana fermions. We analyze the symmetries of the lattice model and find lattice analogs of the anomalies of the corresponding continuum theory. An important role is played by the lattice translation by one lattice site, which in the continuum limit involves a discrete axial transformation. On a lattice with periodic boundary conditions, the Hilbert space breaks up into sectors labeled by theNc-alityp= 0, …Nc− 1. Our symmetry analysis implies various exact degeneracies in the spectrum of the lattice model. In particular, it shows that, form= 0 and evenNc, the sectorspandp′ are degenerate if |p−p′| =Nc/2. In theNc= 2 case, we explicitly construct the action of the Hamiltonian on a basis of gauge-invariant states, and we perform both a strong coupling expansion and exact diagonalization for lattices of up to 12 lattice sites. Upon extrapolation of these results, we find good agreement with the spectrum computed previously using discretized light-cone quantization. One of our new results is the first numerical calculation of the fermion bilinear condensate. 
    more » « less
  5. A<sc>bstract</sc> We explore a new approach to boundaries and interfaces in theO(N) model where we add certain localized cubic interactions. These operators are nearly marginal when the bulk dimension is 4 −ϵ, and they explicitly break theO(N) symmetry of the bulk theory down toO(N− 1). We show that the one-loop beta functions of the cubic couplings are affected by the quartic bulk interactions. For the interfaces, we find real fixed points up to the critical valueNcrit≈ 7, while forN >4 there are IR stable fixed points with purely imaginary values of the cubic couplings. For the boundaries, there are real fixed points for allN, but we don’t find any purely imaginary fixed points. We also consider the theories ofMpairs of symplectic fermions and one real scalar, which have quartic OSp(1|2M) invariant interactions in the bulk. We then add the Sp(2M) invariant localized cubic interactions. The beta functions for these theories are related to those in theO(N) model via the replacement ofNby 1 − 2M. In the special caseM= 1, there are boundary or interface fixed points that preserve the OSp(1|2) symmetry, as well as other fixed points that break it. 
    more » « less
  6. A bstract The mass spectrum of 1 + 1-dimensional SU( N ) gauge theory coupled to a Majorana fermion in the adjoint representation has been studied in the large N limit using Light-Cone Quantization. Here we extend this approach to theories with small values of N , exhibiting explicit results for N = 2 , 3, and 4. In the context of Discretized Light-Cone Quantization, we develop a procedure based on the Cayley-Hamilton theorem for determining which states of the large N theory become null at finite N . For the low-lying bound states, we find that the squared masses divided by g 2 N , where g is the gauge coupling, have very weak dependence on N . The coefficients of the 1 /N 2 corrections to their large N values are surprisingly small. When the adjoint fermion is massless, we observe exact degeneracies that we explain in terms of a Kac-Moody algebra construction and charge conjugation symmetry. When the squared mass of the adjoint fermion is tuned to g 2 N/π , we find evidence that the spectrum exhibits boson-fermion degeneracies, in agreement with the supersymmetry of the model at any value of N . 
    more » « less
  7. A bstract A pair of the 2D non-unitary minimal models M (2 , 5) is known to be equivalent to a variant of the M (3 , 10) minimal model. We discuss the RG flow from this model to another non-unitary minimal model, M (3 , 8). This provides new evidence for its previously proposed Ginzburg-Landau description, which is a ℤ 2 symmetric theory of two scalar fields with cubic interactions. We also point out that M (3 , 8) is equivalent to the (2 , 8) superconformal minimal model with the diagonal modular invariant. Using the 5-loop results for theories of scalar fields with cubic interactions, we exhibit the 6 − ϵ expansions of the dimensions of various operators. Their extrapolations are in quite good agreement with the exact results in 2D. We also use them to approximate the scaling dimensions in d = 3 , 4 , 5 for the theories in the M (3 , 8) universality class. 
    more » « less